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SUMMARY

The relationship between subjective workload and subsequent human

behaviors is considered. A model of the dynamics of this relationship is proposed.

Results of three simulation experiments are reported that show that simple linear

identification algorithms are surprisingly robust in online identification of noisy,

nonlinear versions of this model. The implications for developing adaptive aiding

and decision support systems are noted.

The results reported here have important potential implications for the Air

Force. The model discussed offers a possible new means of dealing with the

problem of workload in a very practical way. The software package developed for

evaluating this model is likely to be of use to other researchers for assessing the

breadth of applicability of this model. The simulation results available to date

support the potential broad applicability of this model to Air Force problems. In

particular, the model and associated algorithms could be embedded in software for

aiding aircraft pilots, C3 decision makers, and other personnel in dynamic, time-

constrained environments. Such applications would enable online inferences of

workload and, if excessive, prompt and/or invoke aiding or automation to reduce

workload to acceptable levels. Accesion For
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INTRODUCTION

The concept of mental workload has long been recognized as an important,

albeit elusive, factor in human performance in complex systems (Moray, 1979;

Gopher & Donchin, 1986; O'Donnell & Eggemeir, 1986). Much research has been

devoted to defining workload constructs and conducting careful measurements.

However, the "holy grail" has not been found, and it has been argued that

approaches to workload should be reconsidered (Hart, 1988).

What is the difficulty? This question can be considered by discussing a set of

finer-grained questions:

• What is workload?

• Why does it matter?

* How can workload be measured?

* How can it be predicted?

* How can it be controlled?

The first question can be answered in several ways. One answer is that

workload is the demand placed upon humans. The usefulness of this definition

depends on the extent to which humans attempt to satisfy all demands, a condition

which is often satisfied in experiments but seldom satisfied in real life.

While demand relates to the load imposed on people, the load experienced

may be a better indicator of workload in the sense that it reflects the human

information processing that actually occurs, rather than what was demanded. Use of

information processing resources may be indicative of capacity utilized and, by

inference, capacity remaining.



This perspective leads immediately to the problem of measuring the use of

information processing resources. Just as constructs such as energy lead to 'proxy"

measures such as temperature and pressure, workload in terms of resource

utilization must be measured using proxy measures. Thus, workload researchers

measure, for example, skin resistance, heart rhythms, and brain potentials.

Changes of such measures are said to reflect changes of workload if two tasks with

arguably different levels of workload yield different values of proxy measures.

A third approach to workload focuses on people's perceptions of their own

workload, typically measured by their reports of their subjective experience of

workload. It can be argued, and often is, that subjective reports do not necessarily

reflect objective workload. For example, people may rate a task as not requiring

much effort, but in fact utilize near maximum information processing resources to do

the task.

People may be sufficiently skilled to perform a difficult task almost

"effortlessly." Similarly, a seemingly very simple task may completely stymie many

people due to lack of knowledge and skills. Thus, workload is necessarily task

specific and person specific.

Choosing among the above three approaches to workload depends on why

workload matters. One reason to be concerned with workload is the possibility that

excessive workload will result in people being unable to do their tasks, or at least not

able to do them well enough. A related concern is the possibility that people may be

able to do their task acceptably but, due to excessive workload, may not be able to

persist or perhaps even survive over a long period of time.

These two concerns typically prompt a desire to measure the objective

workload -- in terms of either load imposed or load experienced -- of particular tasks
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and, if consequences such as outlined above are likely, tasks are redesigned.

Alternatively, aiding and/or training might be provided. The result is that tasks are

"certified" as doable, at least In terms of workload.

SAnother type of concern - the concern in this report -- is people's reactions to

workload. In other words, how do people behave in high workload situations?

Several recent efforts (Hart, 1988; Morris & Rouse, 1988) have indicated that people

do not simply put up with high workload. They adapt their behaviors to cope with the

workload by, for example, changing strategies, delaying low priority tasks, and

accepting degraded but satisfactory performance.

It seems reasonable to argue that these types of adaptive behaviors are in

response to perceptions of workload. If these perceptions are verbalized, although

they usually are not, then they might be recorded as subjective workload ratings.

Such ratings are proxy measures of people's perceptions. The use of such

measures to explain and predict behaviors is the focus of this report.

Before pursuing this topic in depth, it is important to discuss the distinction

between the effects of workload on behavior and its effects on performance.

Traditional workload research has attempted to relate some statistical measure of

workload (e.g., the average) to some statistical measure of performance (e.g., again,

the average). The basic hypothesis is that high workload, and perhaps low

workload, will result in degradations of how well tasks are done. Despite numerous

studies of this hypothesis, it is usually concluded that there is Insufficient evidence to

reject the null hypothesis that workload and performance are unrelated.

Why does such a counterintuitive result occur so frequently? The answer, it

can be argued, is that people can respond to workload excesses, or deficits, by

changing what they do, but not necessarily how well. In other words, they can
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change their behaviors, which may or may not affect performance. Thus, workload

will not affect performance unless changes of behavior affect performance, which

may be difficult to assess in realistically complex tasks -- see, for example, Enstrom

& Rouse (1977) where root-mean-squared tracking error was the least sensitive

measure (of nine) to distractions in manual control tasks.

A further complication with traditional studies is the typical reliance on

aggregate measures. If people change their behavior in response to workload

changes, any performance impact of these behavioral changes occurs later in time

since behavior seldom affects performance measures instantaneously. To capture

this phenomenon, analyses must relate moment-to-moment variations of workload to

moment-to-moment changes of behavior which, in turn, relate to subsequent

moment-to-moment variations of performance. This requires the use of time series

analysis, or equivalent, rather than traditional analysis of variance methods.

Two recent studies of workload in process control tasks employed time series

analysis to estimate autocorrelations and cross-correlations of subjective workload,

behavior, and performance (Morris & Rouse, 1988). Substantial time-lagged

relationships were found among moment-to-moment variations of workload,

behavior, and performance. The obvious conclusion is that subjectively reported

mental workload is a dynamic process, rather than a static property of task

situations. Thus, the average workload, as well as the average performance, are

inadequate measures -- at the very least, averages provide poor means for

understanding mental workload.

This report focuses on the dynamics of mental workload. A model is

formulated that depicts workload dynamics in the context of system control. The

identifiability of relationships within this model is discussed, with emphasis on the
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possibility of online identification for the purpose of estimating and predicting

workload and behavior. Results of a simulation experiment are reported that

illustrate the sensitivity of identification accuracy to a variety of parameters. These

results show that very simple linear identification methods are somewhat surprisingly

robust in noisy, nonlinear environments. It is concluded that these results provide

initial evidence that the adaptability of performance aids and decision support

systems can be substantially enhanced.

The results reported here have important potential implications for the Air

Force. The model discussed in the next section offers a possible new means of

dealing with the problem of workload in a very practical way. The software package

developed for evaluating this model is likely to be of use to other researchers for

assessing the breadth of applicability of this model. The simulation results available

to date, and presented later in this report, support the potential broad applicability of

this model to Air Force problems. In particular, the model and associated algorithms

could be embedded in software for aiding aircraft pilots, C3 decision makers, and

other personnel in dynamic, time-constrained environments. Such applications

would enable online inferences of workload and, if excessive, prompt and/or invoke

aiding or automation to reduce workload to acceptable levels.

THE MODEL

The variables within the model include four vectors:

X,(t) = system state at time t
G tt = human activity at time t
p, t = system performance at time t
s(t) = subjective experience of workload at time t

As indicated in Figure 1, subjective experience (s) is related to what people do (u.,

how the system responds (x), and Derhags how well performance objectives are
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achieved (0)1. However, performance is only related to subjective experience

indirectly, via two transformations -- even feedback of performance results (shown

dotted in Figure 1) is typically delayed and, therefore, cannot affect behavior directly.

A more direct research question is how subjective experience s affects behavior u -

as emphasized earlier, this is the concern in this report.

SUJETIE "HUMAN SYSTEM SYSTEM

EXPERIENCE ACTIVITIES - 0-STATE PERFORMANCE

Figure 1. Basic Relationships

Based on the relationships shown in Figure 1, the elements of the model can

be explicated. The next state of the system depends on the current state x(t) and

current inputs u(t), i.e.,

xK(t+l) = FLO).t) u-t)]. (1)

These variables mnight be expressed In different termns, e.g., (Gopher & Braune, 1984), but such
characterizations tend not to capture the time vadation of Interest.
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Note that relationship (1) specifies a dynamic system but leaves open the form of the

function F -- it could be of standard mathematical form or it could specify logical

relationships within a rule-based system. Quite simply, F describes how the system

(e.g., an aircraft) dynamically responds and typically is known or available from the

designers of the system.

The "subjective state" of the human depends on the state of the system,

human's inputs and previous subjective experience, i.e.,

_s(t+l) = GWO~t, u(t), ONt). (2)

Thus, the evolution of subjective experience s(t) is represented as a dynamic

process which allows for carryover effects, e.g., *psychological inertia" due to recent

high workload, or stress due to "operating on the edge" as found in Morris & Rouse

(1988). Equation (2) also allows the possibility of changes of behavior u(t) to

attenuate subjective experience 1(t) -- in other words, adaptive strategies and

behaviors.

Defining the augmented state of the human-machine system as the vector

containing both the system state and the human's perception of his/her own state,

* r.yx(t+ 1)
x*(t+1) - t------ (3)

enables combining relationships (1) and (2) to yield

x (t+1) = F L[t), u(t)] (4)

where F is related to F and G In a mathematical and/or logical manner. Thus, the

model assumes that the human's behavior serves the purpose of controlling the

system state and his/her own state.
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The relationship between the human's activity u and the augmented state can

be characterized by

ug(t+l) = H[- *(t), u(t)] (5)

which depicts u as evolving dynamically. This allows, for example, the possibility

that Au is limited -- that is, its rate of change is limited due to neuromotor dynamics.

Given x(t), u(t), s(t) for t = 1,2, ..., one can identify F' and H using one or more

of a variety of identification algorithms (Rouse, et al., 1989). If relationship (1)

represents a signal processing task (e.g., flight control), identification of F' and H

should be reasonably straightforward. In contrast, if relationship (1) represents a

symbol processing task (e.g., flight planning or re-planning), identification is possible

although cumbersome. The algorithms used in this study are discussed in a later

section.

A comparison of F (which is typically known or can be similarly identified) with

F* enables determination of G, although this may not be a straightforward

mathematical or logical process. With G and H known, it is possible to predict

subjective experience s(t) via G, and also predict behavior u(t) via H.

USE OF THE MODEL

The capability to predict subjective experience s(t) and behavior M(t), via

knowledge of G and H, can greatly enhance intelligent interfaces associated with

aiding and decision support (Rouse, 1988; Rouse, et al., 1988, 1990; Rouse &

Morris, 1987). Based on the above model, a support system can predict people's

subjective experience and the consequent activities. Alternatively, subjective

experience might be inferred from activities. Either possibility can be of great value
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for support functions such as information management, adaptive aiding, and error

monitoring.

For such a scheme to work, measurement of x(t), u(t), and s(t) must be

possible. Measurement of system state x(t) and behavior u(t) is straightforward.

Subjective experience s(t) can be assessed in a variety of ways. Reasonable

success has been achieved using auditory probes and oral responses on ten-point

rating scales (Johannsen & Rouse, 1983; Morris & Rouse, 1988). It is easy to

imagine alternative approaches that involve, for example, visual probes and manual

responses such as pressure on a control element.

The most important factor in choosing among approaches for measuring

subjective experience s(t) is the purpose that these measurements are serving. It is

completely unnecessary to make the assertion that 1(t) is synonymous with any of

the traditional metrics of workload. It is also unnecessary for s(t) to be strongly

related to performance 2(t). All that is necessary is that subjective experience 1(t)

affect strategies and behaviors that directly influence behavior u(t). Fortunately, as

noted earlier, there is strong evidence that s(t) and M(t) are related (Hart, 1988;

Morris & Rouse, 1988).

The frequency with which subjective experience s(t) can be measured does

pose a potential problem since s(t) can only be sampled, say with period T. Given

measurements of x(t) and u(t) for t = 1,2, ..., and s(t) for t = T, 2T, ..., the essence of

the identification problem is determining the best-fit relationship F* that enables

prediction of subjective experience s(t) and, hence, behavior u(t) for t = 1,2, ... If T =

1, the sampling problem is obviously eliminated. However, people cannot be probed

at this rate. More realistically, T could be 10-20 for experimental purposes, and

perhaps 50-100 for calibration purposes within applications.

9



This constraint can be handled in two ways. One approach is to interpolate

between samples of s(t). The simplest form of this approach would be linear

interpolation. In other words, a straight line could be drawn between s(T) and s(2T),

for example, and this line used to estimate s(T+1), s(T+2), ... This is one of the most

rudimentary forms of interpolation.

A more sophisticated approach is to model subjective experience s(t) as a

discrete time series with time units equal to T. The resulting model can then be

converted to continuous time, and then transformed back to discrete time for T=1.

While this does not recreate information lost due to sampling, it does provide a much

more rigorous approach to dealing with missing data than possible with simple

interpolation.

This problem can be minimized, but not eliminated, by using as small a value

of T as possible during model development. If the resulting F* is reasonably robust,

across conditions and people, it can form the basis for model-based estimation

(interpolation) in situations where T cannot be small. If, on the other hand, F* is

totally situation and person dependent, then the proposed approach is unlikely to be

very successful. The essence of the problem, therefore, is whether or not F* can be

identified (feasibility) and whether or not these methods can be applied in realistic

settings (practicability).

A final issue concerns how the ability to predict subjective experience s(t) and

behavior u(t) would be integrated into an aiding scheme, as well as how the nature

of aiding would affect s(t) and, consequently, u(t). The basic idea is to use s(t)

probes until G and H are identified, and then only occasionally use s(t) probes for

calibration. The stability and universality of G will strongly influence this process.

The structure of G will have to be sufficiently robust to handle the types of events
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noted earlier. The parameters of G will have to be sufficiently stable to enable

periods of open-loop predictions of at least 50-100 seconds in length, and hopefully

many minutes. G may have to be tailored to each person -- hopefully via parametric

rather than structural changes.

SIMULATION EXPERIMENTS

To explore the feasibility of the proposed model of the dynamics of workload,

three simulation experiments were performed. The simulation environment used is

depicted in Figure 2.

Aircraft X Situation v Workloadol
Model Model model1

U Control

Model

Figure 2. Simulation Environment



The task simulated was compensatory control of the role and pitch of an

aircraft modeled as a second order linear dynamic system, characterized by natural

frequencies and damping ratios indicated in later discussion. The situation model

mapped horizontal and vertical deviations to a single distance metric.

Two different workload models were employed and are described in the

discussion of each experiment. Two control models were also used, one a standard

optimal linear controller and the other a linear controller whose gains were affected

by workload as discussed below. Unear models of manual control are among the

few human performance models that can be used as "off-the-shelf" components of

larger models -- see Chapter 3 of Rouse (1980) for a review of the background and

nature of these models.

Note that these experiments did not involve human controllers. Humans'

perceptions of workload and control behavior were modeled. In this way, the

experimenters always knew the "ground truth" which was then compared to the

outputs of the identifiers.

It is also important to note that the simple task chosen provided a strong test

of the proposed model in the following way. Since the baseline for all of the models

indicated in Figure 2 is linear or near linear, linear estimation theory provides a

strong basis for identification. As nonlinearities and noise are added, as discussed

below, linear identification methods will start to have problems. If degradation is

abrupt, then we must conclude that the proposed model is much too fragile to be of

practical value, particularly for more realistic aircraft, situation, and workload models.
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Identification

Figure 2 indicates two identifiers, one for workload and the other for control,

or G and H from equations 2 and 5, respectively. The simulation experiments

described later in this section were designed to test these identifiers.

The purpose of the workload identifier is to determine relationships between

observed states x and perceptions of workload corrupted by noise -S. The "ground

truth" is that workload is related to the perceived situation. However, the identifier is

not privy to this knowledge.

The workload identifier is also faced with the problem of only being able to

sample j every T time units. As discussed in an earlier section, this problem can be

handled by interpolation of some form or discrete-continuous-discrete

transformations that enable estimating intervening, non-sampled values of s.

The control identifier shown in Figure 2 is much more straightforward than the

workload identifier. Its purpose is to determine how workload _, as well as the

system state x and past control actions u_. affect future control actions. This is a

simple linear identification problem, except for those cases where the "ground truth"

control model involves a nonlinear modification of control gains due to workload.

For both identification problems, a, simple linear identifier was used as

depicted in Figure 3. A rudimentary view of how such an identifier works is

New Model = Old Model + Gain (Observation - Prediction) (6)

where the predicted output of the process of interest (i.e., workload ratings or control

behaviors) is based on the old model which, as shown in (6), is then compared to the

actual output of the process. A variation of this type of identifier is a fading-memory

identifier where the gain is adjusted to enable, in effect, forgetting of older
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observations. Derivation and two other types of application of linear identifiers are

discussed in Enstrom and Rouse (1977) and Rouse (1977).

New Old Identifier [Observation - Prediction]
Model = Model + Gain

Based On
GAIN Old Model

MEMORY PARAMETER, B

Figure 3. Approach to Identification

Experiment 1

Three second-order aircraft models were considered: underdamped, critically

damped, and overdamped. This resulted in fast, but oscillatory responses to control

inputs (underdamped); responses as fast as possible without oscillation (critically

damped); and sluggish responses (overdamped). The natural frequency and

damping ratio for each of these models are indicated in Figure 4a. The control

model was the optimal linear control for each aircraft model.
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Type of Natural Damping

Model Frequency Ratio

Overdamped 0.5 8.0

Critically Damped 0.5 1.0

Underdamped 0.5 0.125

Figure 4a. Aircraft Model Parameters

Type of Natural Damping

Model Frequency Ratio

Overdamped 0.05 4.0

Underdamped 0.05 0.25

Figure 4b. Unear Workload Model Parameters

Type of Time

Model Constant

Slow 10

Fast 1

Figure 4c. Heuristic Workload Model Parameters
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A purely linear workload model was used for this experiment. A second ordermodel was used based on the cross-correlation results (see Figure 5) for the timeseries analysis in Morris & Rouse (1988). Both underdamped (oscillatory response
to situation changes) and Overdamped (sluggish response) models were considered.The natural frequency and damping ratio for each of these models are shown in
Figure 4b.

0.7

0.5

0.3

Correlation
0.1

-0.3

-0.5 1 2 3 4 5 6 7 1 6 1011 12 1314151617 18 19 20 2122 2324 25 26 27 2 29 30 3132

L"g
Figure 5. Cross-Correlation for Effort Ratings and Performance

(Morris & Rouse, 1988)

The primary independent variables in this experiment were the noise level onworkload samples and the workload sampling period. Noise levels studied were 0,10, and 20% where these percentages refer to the standard deviation of the noise asa percentage of the magnitude of A. Research has indicated (Rouse, 1980) thaterror in judging a variable is typically roughly 10% of the magnitude of the variable.
Sensitivity to this percentage was assessed by also considering 0% error and 20%,
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or twice the typical level. Sampling periods studied included 1, 2, 5, 10, and 20 time

units.

The dependent measure of interest was the root-mean-squared error in

predicting workload, divided by the root-mean-squared magnitude of the workload. If

this ratio is small, the proposed model is performing well. As this ratio approaches

1.0, one would get equally good results by simply predicting the mean workload

rather than using the proposed model of the dynamics of workload.

Experiment 2

The second experiment considered the same parameter variations, but

changed the workload model. The second-order linear model was replaced with a

heuristic model based on results from Morris & Rouse (1988) -- see Figure 6.

This heuristic model was a first-order linear model driven heuristically by

variations of the perceived situation, characterized by the nonlinear distance metric.

These heuristics were based on the nature of the situation (acceptable vs.

unacceptable) and its likely evolution (improving vs. worsening). Acceptability was

determined by thresholds on the distance metric and its rate of change. Judgments

regarding the likely evolution of the situation were based on rates of change of these

variables. A negative rate of change indicated an improving situation (i.e., distance

decreasing) while a positive rate of change indicated a worsening situation (i.e.,

distance increasing). Figure 7 summarizes the heuristic portion of this model

indicating the value of workload (s) for various positions in the D vs. _ plane.

Within this heuristic model, two variations of the first-order model parameter

(i.e., the time constant) were studied to compare fast responding to slowly

responding dynamics. The parameters used for this model are indicated in Figure

17



Psychological Operating
Inertia on Edge

Acceptable
Situation

/ I

Acceptable xp t I Unacceptable S - Acceptable
Explanation Situation Plan

A A

I 
I

Inadequate Inadequate
Explanationj Plan

ExecutionSSurprise Difficulties

Rating Increase

Rating Decrease

Figure 6. Factors Affecting Changes in Effort Ratings
(Morris & Rouse, 1988)
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.2 .10

.1 • 8

.1 .2

Figure 7. Heuristic Portion of Workload Model

4c. The combination of the heuristic portion of the model and the first-order

component resulted in a nonlinear model, due to the discontinuous gain created by

the heuristics, where workload changes responded either quickly (small time

constant) or slowly (large time constant) to situational changes.
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Experiment 3

This experiment focused on identifying the control model. All parameter

variations were the same as those in Experiment 1. The one exception was the use

of the heuristic control law whereby controller gains were modified by a multiplicative

workload term. This term decreased gains for low workload, proportionally

increased gains with increasing workload until moderate workload where gains were

constant and unattenuated. For high workload, gains were proportionally decreased

as workload increased, at a rate much smaller than that for low workload. This

heuristic is based on the results reported in Morris and Rouse (1988).

The dependent measure for this experiment was the root-mean-squared error

in predicting control actions, divided by the root-mean-squared magnitude of control.

As with the workload-related ratio, if this ratio is small, the proposed model is

performing well. As this ratio approaches 1.0, equally good results would be

obtained by simply predicting the mean control.

RESULTS

All of the simulation results discussed in this section are based on simulation

runs of 200 time units. All data points on the figures shown below are averages

across 10 runs.

Two results hold across all experiments. First, rudimentary linear

interpolation between samples does not work. The ratios of root-mean-squares

became completely unacceptable -- much greater than 1.0. Consequently, all of the

results discussed in this section are based on the aforementioned discrete-

continuous-discrete transformations.
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The second result that holds across all experiments is a lack of benefit from

employing identification algorithms that assume "ground truth" to be linear with time-
varying parameters. We had expected that a "fading memory" identifier would be

better able to deal with the nonlinearities in the workload and/or control models.

Results indicated, however, that the best rate of "fading" was no fading. In other

words, there was no value in "forgetting" older observations and standard linear

identification algorithms worked best.

Experiment 1

The results for the first experiment are shown in Figures 8a-8f. Not

surprisingly, the linear identifier did quite well for linear workload model. As

expected, the error was near-zero when the noise level was 0%. Small errors,

nevertheless, arose due to the identifier being unaware of the transformation of x to

the nonlinear distance metric.

Identification results were best for overdamped aircraft models and

underdamped workload models. In other words, slowly varying , and rapidly

responding s led to the best identification results.

Identification errors increased with sampling period T if there was noise. The

rate of increase was related to the noise level. It appears in these plots that errors

are roughly proportional to the product of sampling period and noise level.

For long sampling periods (not shown in figures), identification error starts to

increase sharply. The "knee" in this curve is related to the nature of the dynamics.

Beyond a certain sampling period, the identifier does not get enough real data to do

a good job. This result agrees with sampling theory and, hence, was expected.
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Figure 8. Results for Identification of Linear Workload Model
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Experiment 2

The results for the study of the heuristic model are shown in Figures 9a-9f.

The fast response heuristic model (Figures 9a-9c) leads to the best results, because

its response is more linear than the slow response model. The results for the fast

heuristic model are comparable to those for the linear overdamped workload model.

For longer sampling periods, performance degrades for the fast heuristic model in a

manner comparable to that for the linear models.

Results for the slow heuristic model (Figures 9d-9f) were not quite as good as

the fast model, which is not surprising because it is much less linear. However, the

slow heuristic model is not as sensitive to sampling period. Thus, identification is not

as good for the slow heuristic model but it also is not as fragile.

Experiment 3

The results for identification of the heuristic control model were all in the

range of 25-30%, independent of noise level and independent of sampling period.

This is not surprising because the "ground truth" control model did not, in itself,

include linear dynamics. Thus, while the linear identifier could have found dynamics

in the control model, if such existed, the model was not dynamic and sampling

period was not a problem.

As noted earlier, the control model included a linear function of aircraft state x,

heuristically attenuated by workload s. The linear identifier was able to find a

reasonable linear relationship between u and the inputs x and 9 despite the inherent

nonlinearity of the underlying "ground truth."
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Figure 9. Results for Identification of Heuristic Workload Model

24



CONCLUSIONS

For linear workload models, the proposed identification model consistently

performed within 10% error ratios, with noise levels up to 20% and reasonable

sampling periods. Results were similar for the fast heuristic workload model, most

likely because it had a strong linear component.

For the slow heuristic workload model, identification performance was

predominantly in the 15-30% range. This is not surprising since a linear

identification algorithm should not work as well when the data is being generated by

a nonlinear process. The performance of the slow heuristic model was also less

sensitive to sampling period.

Identification performance of the heuristic control model was within the 25-

30% range. This performance was also fairly insensitive to sampling period, again

apparently due to the lack of underlying linear dynamic relationships.

Overall, the linear identifier worked quite well for linear workload models

whose inputs were a nonlinear transformation of system state and whose outputs

were corrupted by noise. The discrete-continuous-discrete transformation enabled

dealing with moderate sampling periods. However, at some point, the identifier was

simply not getting enough information to do a good job.

The linear identifier did not work quite as well for the heuristic workload

models, particularly if the linear component of its outputs was not dominant.

However, its identification performance was not that bad, and it was less sensitive to

sampling period. A similar conclusion can be reached for the identification of the

heuristic control model.
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Thus, the proposed approach to modeling the dynamics of mental workload

has been shown to perform acceptably and is reasonably robust. The next step is to

run similar experiments with real human controllers. If comparable results are found,

the likely subsequent step will be to consider more complicated task environments.

At some point, much more sophisticated identification algorithms are likely to

be needed. While such may be available and yield improved performance, they

inevitably will be more complex than simple linear algorithms. In this report, we have

shown that these simple algorithms perform remarkably well when the underlying

"ground truth" has substantial nonlinear and heuristic components.

The practical implication of these conclusions is that online identification and

prediction of workload and subsequent behaviors may be feasible. Perhaps

surprisingly, very simple approaches performed adequately when the noisy,

nonlinear "ground truth" differed substantially from the assumptions that typically

underlie the use of these approaches. If further research, particularly human-in-the-

loop empirical studies, shows that these simple concepts and their extensions work

in more complex task environments, then it may be possible to substantially enhance

the adaptability of aiding and decision support systems.
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